Applications are invited for a fully-funded three year PhD to commence in October 2019. The PhD will be based in the School of Pharmacy and Biomedical Sciences and will be supervised by Professor Gordon Blunn and Dr Gianluca Tozzi.
The work on this project will investigate:
- the strain distribution in normal human articular cartilage obtained from bone cancer specimens
- the strain distribution in human OA samples taken from the tibial plateau during total knee replacement
- the strain distribution in specimens taken at different time points (longitudinal study) from animal models that develop OA
Project description Osteoarthritis (OA) affects over 250 million people worldwide, impacts more than half of the population over the age of 65 and is predicted to increase 7-fold by 2030. Our understanding of the aetiology and pathogenesis of OA remains incomplete despite numerous research studies over several decades and treatments have been largely unsuccessful.
Early OA is associated with early changes in the architecture and volume of subchondral bone, which has led many in the field to think of OA as a disease of the βwhole joint.β The focus on bone changes as the initial effector of the osteoarthritic process is influenced by studies proposing how pathogenesis of OA can be attributed to a primary alteration in surrounding bone, which leads to increased strains in the the overlying articular cartilage. This adversely affects chondrocyte function and cartilage matrix loss. This hypothesis is supported by numerous studies which have demonstrated that changes in bone occur very early in the development of OA. However, cartilage and bone both have the capacity to respond to adverse biomechanical signals and, therefore, it is more likely that both tissues undergo structural and functional alterations during the initiation and evolution of OA. The extent, the interrelated effect on bone and cartilage and the precise timing of these changes remains unknown.
The strain in the subchondral bone and in the cartilage will be investigated using high-resolution 3D X-ray computed tomography (XCT), using both adsorption and phase-contrast imaging. Specimens will be subjected to in situ mechanical loading and imaged at increasing incremental loads. The degree of strain will be determined using digital volume correlation (DVC) and its distribution related to the degree of damage using histology and immuno histochemistry, which will detect the breakdown of the cartilage matrix.
The University of Portsmouth is uniquely positioned to answer this research question with its state-of-the-art imaging facilities available at the Zeiss Global Centre as well as world-leading experience in digital volume correlation in musculoskeletal research. The project will develop and train a PGR student in the large research area of osteoarthritis, but at the same time will utilise new techniques to address the research question. The student will utilise and develop skills, which could be applied to other aspects of biomedical engineering giving them a number of potential career opportunities after completing the PhD.
How to Apply
Interested parties should contact Professor Gordon Blunn (gordon.blunn@port.ac.uk)
Full information can be found here