Click here to read some interesting recently published papers from our community. If you have published an article in the field of in silico medicine, send it to us: we will include it in this section of the newsletter!
IEEE Journal of Biomedical and Health Informatics: Position paper From the digital twins in healthcare to the Virtual Human Twin: a moon-shot project for digital health research
Marco Viceconti et al
Abstract
The idea of a systematic digital representation of the entire known human pathophysiology, which we could call the Virtual Human Twin, has been around for decades. To date, most research groups focused instead on developing highly specialised, highly focused patient-specific models able to predict specific quantities of clinical relevance. While it has facilitated harvesting the low-hanging fruits, this narrow focus is, in the long run, leaving some significant challenges that slow the adoption of digital twins in healthcare. This position paper lays the conceptual foundations for developing the Virtual Human Twin (VHT). The VHT is intended as a distributed and collaborative infrastructure, a collection of technologies and resources (data, models) that enable it, and a collection of Standard Operating Procedures (SOP) that regulate its use. The VHT infrastructure aims to facilitate academic researchers, public organisations, and the biomedical industry in developing and validating new digital twins in healthcare solutions with the possibility of integrating multiple resources if required by the specific context of use. Healthcare professionals and patients can also use the VHT infrastructure for clinical decision support or personalised health forecasting. As the European Commission launched the EDITH coordination and support action to develop a roadmap for the development of the Virtual Human Twin, this position paper is intended as a starting point for the consensus process and a call to arms for all stakeholders.
---------------------------------------------------------
Journal of Applied Biomechanics: In Silico Biomarkers of Motor Function to Inform Musculoskeletal Rehabilitation and Orthopedic Treatment
Ilse Jonkers et al
Abstract
In this review, we elaborate on how musculoskeletal (MSK) modeling combined with dynamic movement simulation is gradually evolving from a research tool to a promising in silico tool to assist medical doctors and physical therapists in decision making by providing parameters relating to dynamic MSK function and loading. This review primarily focuses on our own and related work to illustrate the framework and the interpretation of MSK model-based parameters in patients with 3 different conditions, that is, degenerative joint disease, cerebral palsy, and adult spinal deformities. By selecting these 3 clinical applications, we also aim to demonstrate the differing levels of clinical readiness of the different simulation frameworks introducing in silico model-based biomarkers of motor function to inform MSK rehabilitation and treatment, with the application for adult spinal deformities being the most recent of the 3. Based on these applications, barriers to clinical integration and positioning of these in silico technologies within standard clinical practice are discussed in the light of specific challenges related to model assumptions, required level of complexity and personalization, and clinical implementation.
---------------------------------------------------------
Journal of the Mechanical Behavior of Biomedical Materials: Coupling biomechanical models of implants with biodegradation models: A case study for biodegradable mandibular bone fixation plates
Pieter Ansoms et al
Abstract
In fracture fixation, biodegradable implant materials are an interesting alternative to conventional non-biodegradable materials as the latter often require a second implant removal surgery to avoid long-term complications. In this study, we present an in silico strategy to design/study biodegradable metal implants focusing on mandibular fracture fixation plates of WE43 (Mg alloy). The in silico strategy is composed of an orchestrated interaction between three separate computational models. The first model simulates the mass loss of the degradable implant based on the chemistry of Mg biodegradation. A second model estimates the loading on the jaw plate in the physiological environment, incorporating a phenomenological dynamic bone regeneration process. The third model characterizes the mechanical behavior of the jaw plate and the influence of material degradation on the mechanical behavior. A sensitivity analysis was performed on parameters related to choices regarding numerical implementation and parameter dependencies were implemented to guarantee robust and correct results. Different clinical scenarios were tested, related to the amount of screws used to fix the plate. The results showed a lower initial strength when more screw holes were left open, as well as a faster decrease over time in strength due to the increased area available for surface degradation. The obtained degradation results were found to be in accordance with previously reported data of in vivo studies with biodegradable plates. The combination of these three models allows for the design of patient-specific biodegradable fixation implants able to deliver the desired mechanical behavior tuned to the bone regeneration process.
---------------------------------------------------------
Journal of the Mechanical Behavior of Biomedical Materials: Patient-specific finite element analysis of human corneal lenticules: An experimental and numerical study
Malavika H Nambiar et al
Abstract
The number of elective refractive surgeries is constantly increasing due to the drastic increase in myopia prevalence. Since corneal biomechanics are critical to human vision, accurate modeling is essential to improve surgical planning and optimize the results of laser vision correction. In this study, we present a numerical model of the anterior cornea of young patients who are candidates for laser vision correction. Model parameters were determined from uniaxial tests performed on lenticules of patients undergoing refractive surgery by means of lenticule extraction, using patient-specific models of the lenticules. The models also took into account the known orientation of collagen fibers in the tissue, which have an isotropic distribution in the corneal plane, while they are aligned along the corneal curvature and have a low dispersion outside the corneal plane. The model was able to reproduce the experimental data well with only three parameters. These parameters, determined using a realistic fiber distribution, yielded lower values than those reported in the literature. Accurate characterization and modeling of the cornea of young patients is essential to study better refractive surgery for the population undergoing these treatments, to develop in silico models that take corneal biomechanics into account when planning refractive surgery, and to provide a basis for improving visual outcomes in the rapidly growing population undergoing these treatments.
---------------------------------------------------------
Journal of Cardiovascular Translational Research: Computational Modelling Enabling In Silico Trials for Cardiac Physiologic Pacing
Marina Strocchi et al
Abstract
Conduction system pacing (CSP) has the potential to achieve physiological-paced activation by pacing the ventricular conduction system. Before CSP is adopted in standard clinical practice, large, randomised, and multi-centre trials are required to investigate CSP safety and efficacy compared to standard biventricular pacing (BVP). Furthermore, there are unanswered questions about pacing thresholds required to achieve optimal pacing delivery while preventing device battery draining, and about which patient groups are more likely to benefit from CSP rather than BVP. In silico studies have been increasingly used to investigate mechanisms underlying changes in cardiac function in response to pathologies and treatment. In the context of CSP, they have been used to improve our understanding of conduction system capture to optimise CSP delivery and battery life, and noninvasively compare different pacing methods on different patient groups. In this review, we discuss the in silico studies published to date investigating different aspects of CSP delivery.
---------------------------------------------------------
High Performance Computing for Drug Discovery and Biomedicine: Effect of Muscle Forces on Femur During Level Walking Using a Virtual Population of Older Women
Zainab Altai et al
Abstract
Aging is associated with a greater risk of muscle and bone disorders such as sarcopenia and osteoporosis. These conditions substantially affect oneβs mobility and quality of life. In the past, muscles and bones are often studied separately using generic or scaled information that are not personal-specific, nor are they representative of the large variations seen in the elderly population. Consequently, the mechanical interaction between the aged muscle and bone is not well understood, especially when carrying out daily activities. This study presents a coupling approach across the body and the organ level, using fully personal-specific musculoskeletal and finite element models in order to study femoral loading during level walking. Variations in lower limb muscle volume/force were examined using a virtual population. These muscle forces were then applied to the finite element model of the femur to study the variations in predicted strains. The study shows that effective coupling across two scales can be carried out to study the muscle-bone interaction in elderly women. The generation of a virtual population is a feasible approach to augment anatomical variations based on a small population that could mimic variations seen in a larger cohort. This is a valuable alternative to overcome the limitation or the need to collect dataset from a large population, which is both time and resource consuming.
---------------------------------------------------------